miR-218 Inhibits Erythroid Differentiation and Alters Iron Metabolism by Targeting ALAS2 in K562 Cells

نویسندگان

  • Yanming Li
  • Shuge Liu
  • Hongying Sun
  • Yadong Yang
  • Heyuan Qi
  • Nan Ding
  • Jiawen Zheng
  • Xunong Dong
  • Hongzhu Qu
  • Zhaojun Zhang
  • Xiangdong Fang
  • Martin Pichler
چکیده

microRNAs (miRNAs) are involved in a variety of biological processes. The regulatory function and potential role of miRNAs targeting the mRNA of the 5'-aminolevulinate synthase 2 (ALAS2) in erythropoiesis were investigated in order to identify miRNAs which play a role in erythroid iron metabolism and differentiation. Firstly, the role of ALAS2 in erythroid differentiation and iron metabolism in human erythroid leukemia cells (K562) was confirmed by ALAS2 knockdown. Through a series of screening strategies and experimental validations, it was identified that hsa-miR-218 (miR-218) targets and represses the expression of ALAS2 by binding to the 3'-untranslated region (UTR). Overexpression of miR-218 repressed erythroid differentiation and altered iron metabolism in K562 cells similar to that seen in the ALAS2 knockdown in K562 cells. In addition to iron metabolism and erythroid differentiation, miR-218 was found to be responsible for a reduction in K562 cell growth. Taken together, our results show that miR-218 inhibits erythroid differentiation and alters iron metabolism by targeting ALAS2 in K562 cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of divalent metal transporter 1 (DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells.

BACKGROUND Divalent metal transporter 1 (DMT1) is a widely expressed metal-iron transporter gene encoding four variant mRNA transcripts, differing for alternative promoter at 5' (DMT1 1A and 1B) and alternative splicing at 3' UTR, differing by a specific sequence either containing or lacking an iron regulatory element (+IRE and -IRE, respectively). DMT1-IRE might be the major DMT1 isoform expre...

متن کامل

MiR-570 inhibits cell proliferation and glucose metabolism by targeting IRS1 and IRS2 in human chronic myelogenous leukemia

Objective(s): Chronic myelogenous leukemia (CML) is a chronic myeloproliferative disorder characterized by the accumulation of myeloid cells with a chromosomal translocation known as the Philadelphia chromosome. In this study, we investigated the roles of miR-570 in CML development. Materials and Methods: Expression of miR-570 in CML samples and cell lines was determined by qRT-PCR. Glucose upt...

متن کامل

PLC-beta 1 regulates the expression of miR-210 during mithramycin-mediated erythroid differentiation in K562 cells

PLC-beta 1 (PLCβ1) inhibits in human K562 cells erythroid differentiation induced by mithramycin (MTH) by targeting miR-210 expression. Inhibition of miR-210 affects the erythroid differentiation pathway and it occurs to a greater extent in MTH-treated cells. Overexpression of PLCβ1 suppresses the differentiation of K562 elicited by MTH as demonstrated by the absence of γ-globin expression. Inh...

متن کامل

MicroRNA miR-24 inhibits erythropoiesis by targeting activin type I receptor ALK4.

MicroRNAs have been suggested to modulate a variety of cellular events. Here we report that miR-24 regulates erythroid differentiation by influencing the expression of human activin type I receptor ALK4 (hALK4). Ectopic expression of miR-24 reduces the mRNA and protein levels of hALK4 by targeting the 3'-untranslated region of hALK4 mRNA and interferes with activin-induced Smad2 phosphorylation...

متن کامل

Ferritin Heavy Subunit Silencing Blocks the Erythroid Commitment of K562 Cells via miR-150 up-Regulation and GATA-1 Repression

Erythroid differentiation is a complex and multistep process during which an adequate supply of iron for hemoglobinization is required. The role of ferritin heavy subunit, in this process, has been mainly attributed to its capacity to maintain iron in a non-toxic form. We propose a new role for ferritin heavy subunit (FHC) in controlling the erythroid commitment of K562 erythro-myeloid cells. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015